Quick Summary:

Work =
$$\lim_{n \to \infty} \sum_{i=1}^{n} (FORCE)(DIST)$$

= $\int_{a}^{b} (FORCE)(DIST)$

Problem type 1: (Leaky bucket/spring) FORCE = $f(x_i)$, DISTANCE = Δx ,

Problem type 2: (Chain/pumping) FORCE = weight of each horizontal slice DISTANCE = distance moved by a slice

> For a chain, we have k = density = force per distanceFORCE = weight of slice = $k\Delta x$ DISTANCE = distance moved by slice

> For pumping, we have k = weight per volume FORCE = k(area of horiz. slice)∆y DISTANCE = distance moved by slice

Some unit facts:

	Metric	Standard
Mass	kg	
Accel.	9.8 m/s ²	32 ft/s ²
Force	Newtons	pounds
	$N = kg \cdot m/s^2$	= lbs
Dist.	m = meters	ft = feet
Work	Joules	foot-pounds
	J = N∙m	ft·lbs

g = grams, in = inches, yd = yards, mi = miles 1000 g = 1 kg 100 cm = 1 meter 12 inches = 1 foot 3 feet = 1 yard 5280 ft = 1 mile

Density of water = $1000 \text{ kg/m}^3 = 9800 \text{ N/m}^3$ = 62.5 lbs/ft^3

Review: Particular scenarios

Type 1 Problems: FORCE = $f(x_i)$, DISTANCE = Δx

1. HW 4A/1, 2, 8, 9 and HW 4C/1 Given force, just need to integrate!

Work =
$$\int_{a}^{b} f(x) dx$$

- 2. HW 4A/3, 4 (Springs)
 - (i) Covert all to meters
 - (ii) Label natural length, L, and note that L corresponds to x = 0. Force = f(x) = kx Work = $\int_{a}^{b} kx \, dx$

Step 1: Find k Step 2: Answer question. *Type 2 Problems*: FORCE = weight of a horizontal slice, DISTANCE = distance to top

- 3. HW 4A/5 and HW 4C/2 (Chain)
 - (i) k = density of chain = weight/dist
 - (ii) FORCE at a subdivision = $k\Delta x$

(iii) Label top x=0, then DIST =
$$x_i$$
.

Work =
$$\int_{a}^{b} x k dx$$

4. HW 4A/6,7 and HW 4C/3 (Pumping) Water density = $9800 \text{ N/m}^3 = 62.5 \text{ lbs/ft}^3$

- (i) Label (put in xy-plane)
- (ii) Draw a horizontal slice and find a formula for its area.
- (iii) FORCE = (Density)(Area) Δ y

(iv) DIST = distance to top
Work =
$$\int_{a}^{b}$$
 (Dist)(Density)(Area) dy